Lie Isomorphisms of Prime Rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prime Lie Rings of Generalized Derivations of Commutative Rings

Let R be a commutative ring with identity. By a Bres̃ar generalized derivation of R we mean an additive map g : R→ R such that g (xy) = g (x) y + xd (y) for all x, y ∈ R, where d is a derivation of R. And an additive mapping f : R → R is called a generalized derivation in the sense of Nakajima if it satisfies f(xy) = f(x)y + xf(y) − xf(1)y for all x, y ∈ R. In this paper we extend some results o...

متن کامل

On Jordan Isomorphisms of 2-torsion Free Prime Gamma Rings

This paper defines an isomorphism, an anti-isomorphism and a Jordan isomorphism in a gamma ring and develops some important results relating to these concepts. Using these results we prove Herstein’s theorem of classical rings in case of prime gamma rings by showing that every Jordan isomorphism of a 2-torsion free prime gamma ring is either an isomorphism or an anti-isomorphism. AMS Mathematic...

متن کامل

Lie Ideals in Prime Γ-rings with Derivations

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M . In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U) ⊂ Z, (ii) d(U) ⊂ U and d(U) = 0, (iii) d(U) ⊂ U , d(U) ⊂ Z.

متن کامل

Notes on Generalized Derivations on Lie Ideals in Prime Rings

Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...

متن کامل

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1969

ISSN: 0002-9947

DOI: 10.2307/1995366